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Ricerca Scientifica 1, I-00133 Roma, Italy
‡ Sezione INFM dell’Universit̀a di Roma Tor Vergata, Via della Ricerca Scientifica 1, I-00133
Roma, Italy

Received 26 March 1996, in final form 5 June 1996

Abstract. The single-vortex dynamics in ladders of overdamped Josephson junctions is
investigated by means of numerical simulations. We derive the velocity(v), the coefficient
of viscosity (η) and the height of the dynamical barrier for the cell-to-cell vortex motion(Eb)

as functions of the bias current(idc), the magnetic field penetration depth(λ⊥) and the vortex
position (x). The vortex dynamics can be satisfactorily described in terms of the motion of a
particle subjected to a potentialU(x, idc, λ⊥), the form of which is analysed.

1. Introduction

The dynamical properties of Josephson junction arrays have been extensively studied in the
past by several groups, both theoretically and experimentally. The efforts have been mainly
centred on the steady dynamical states and their dependence on the external magnetic field,
the bias current, the array disorder, the screening field induced by the circulating currents,
etc [1].

An appealing subject within this framework is that of vortex dynamics, which has been
the object of numerical, analytical and experimental research in recent years. In most
cases this study has been performed in the context of the sine–Gordon model, either in its
continuous or discrete version that describe, respectively, a long extended junction and a
1D array of parallel shunted junctions [2].

In this paper we present a detailed study of the single-vortex dynamics in a ladder
of resistively shunted overdamped Josephson junctions, described by the RSJ model. This
study is quite relevant for the practical implementations of devices based on superconducting
junction arrays. Indeed, the controlled transmission of localized and quantized excitations
(vortices/antivortices) is the operational basis of almost all of the cryoelectronic devices
(rapid single-quantum flux logics, neural networks, transistors, photofluxonic detectors, etc)
[3]. Indeed, a quantitative study of the processes of creation and propagation of the signals
is essential for the design of such kinds of device. One needs to know determinant factors
like the velocity of transmission of the vortex/antivortex, and the scales of energy involved
in the processes and their dependence on the physical parameters—either external (e.g. the
bias current supplied to the circuit,iext ) or intrinsic to the array (i.e. the penetration depth
of the magnetic field,λ⊥).

We have studied dynamical quantities such as the vortex velocity,v, the coefficient of
viscosity,η, and the height of the dynamical barrier for the cell-to-cell vortex motion,Eb.
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Their dependence on the vortex position(x), the bias current (idc) and the screening field
(parametrized byλ⊥) has been carefully worked out.

The dynamics of a single vortex in a ladder can be described in terms of the motion of
a particle subjected to a 1D potentialU(x, idc, λ⊥), the shape of which will be discussed
in detail. The above-mentioned dynamical quantities can be satisfactorily derived from this
potential.

2. The model

For our studies we consider an ordered ladder with square plaquettes and one
superconducting junction per link. The dynamics of the ladder is simulated in the limit
of zero shunt capacity. We also assume that the phase of the order parameterφi is constant
on each grain (i.e. we consider point grains). The dynamical equations atT = 0 are [4]∑

j

h̄

2eRij

d

dt
(φi − φj − Aij ) =

∑
j

Ic sin(φi − φj − Aij ) + Ii(ext) (1)

where i, j stand for nearest-neighbour points.Ii(ext) is the external current entering the
site i, Rij is the shunt resistance of the junction, andIc is the critical current. In general,
Aij includes the contributions of both the external and the internal magnetic fields:

Aij = 2π

80

∫ j

i

(aext + aint ) dr (2)

wherea is the potential vector, and80 the flux quantum. In this paper the external magnetic
field is set to zero, andAij is entirely due to the currents circulating in the array (iij ):

Aij = 1

4πλ⊥
FFij ;klikl . (3)

HereFF is the inductance matrix. We have obtained it by applying the Biot–Savart law so
as to calculate the magnetic field induced on a link by all of the currents circulating in the
array (every current is supposed to flow within a cylinder of lengtha and radius 0.005a)
[5]. λ⊥ is the penetration depth of the magnetic field, defined as in [6]:

λ⊥ = 1

2π

80

µ0Ica
(4)

wherea is the lattice spacing. We have chosen the gauge

∇ · A = 0 (5)

where ∇ is the discrete divergence operator ((∇ · A)i = ∑
j Aij ). With this choice,

equation (1) becomes

d

dt
φi = G−1

ij

(∑
l

Ic sin(φj − φl − Ajl) + Ij (ext)

)
(6)

where the matrixG is the discrete version of the laplacian operator. If the values of theφ′
i

andA′
ij are known at a timetn, obtainingφi(tn+1) is straightforward.

On the other hand, it is well known that any vector field can be decomposed into
two components, with zero divergence and curl respectively. The term(d/dt)(Aij ) can be
calculated as

d

dt
(Aij ) = FF

−1
ij ;klP1(φk − φl − Ic sin(φk − φl − Akl)) (7)
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where FF is the restriction ofFF to the subspace with zero divergence andP1 is the
projection operator onto this subspace. For annx × ny array,G andFF are, respectively,
(nx × ny)

2 and((nx − 1) × (ny − 1))2 matrices.

Figure 1. (a) Vortex trajectories in a 32-cell ladder. We consider different values of the
parameters: a:idc = 0.9, λ⊥ = ∞; b: idc = 0.9, λ⊥ = 1; c: idc = 0.7, λ⊥ = ∞. The
spatial coordinatex and the time are given, respectively, in units of the lattice spacinga and
τ = h̄/(2eIcRij ). The inset shows the cell-average velocity in case c. (b) The distribution of the
horizontal currents (ix ) along the upper branch of a 128-cell ladder, in the cases whereidc = 0.9,
λ⊥ = ∞ (black dots),idc = 0.5, λ⊥ = ∞ (rhombs) andidc = 0.9, λ⊥ = 1 (continuous line).
The distribution is asymmetric because the vortex is in motion (from right to left). Note that
the variation of the parameters hardly affects the vortex shape around its centre. The effect of
the ladder inductance is to increase the ‘peripheral’ currents (i.e., the current tends to flow along
the external links); in the absence of vortices,ix is at its maximum at the border. This explains
the shape ofix in the case whereλ⊥ = 1.

It is worthwhile noting that, if the approximation of considering grain points is made,
the fluxoid quantization is automatically fulfilled:∑

ij∈α

θij + 2π

80
(f tot

α ) = 2nαπ (8)



7466 J C Ciria and C Giovannella

where
∑

ij∈α stands for the clockwise sum along the links of theα-plaquette andθij is
the gauge-invariant phase along the linkij—restricted to the interval(−π, π ]–. f tot

α =∑
ij∈α Aij is the total flux through the cell.

The ladder is biased with an external dc current,Iext = Idc, that is perpendicular to the
ladder. Time is measured in units of the adimensional quantityt/τ , with τ = h̄/(2eIcRij ).
Currents are normalized toIc.

The creation of a single vortex is achieved through the temporary breaking of a link at
the border of the ladder. The current tends to surround this defect, and vorticity is induced
in the rightmost plaquette. After its creation the vortex, subjected to the Lorentz force,
moves along the ladder.

Figure 2. A 64-cell ladder: (a)v versusidc (infinite penetration depth); (b)v versusλ⊥ for
idc = 0.95 (black dots),idc = 0.90 (rhombs) andidc = 0.80 (open circles). The values of
v plotted refer to the vortex motion far from the border of the ladder (they correspond to the
v-plateau shown in the inset of figure 1).v is given in units ofa/τ , wherea is the lattice
spacing andτ = h̄/(2eIcRij ).
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3. Results and discussion

Figure 1(a) shows different examples of vortex trajectories. We identify the vortex position
with that of its centre, i.e., the cell with vorticitynα = 1 (see equation (8)).

Thus, during the motion, the vortex position acquires discretized values. We define a
cell-average velocityv(x) as 1/Tn, whereTn is the time that the vortex spends in celln. It
is trivially related to the instantaneous velocity,vi(x), v(x) = 〈vi(t)〉n, where

〈vi(t)〉n = [1/(tn+1 − tn)]
∫ tn+1

tn

vi(t) dt

(tα is the time at which the vortex enters cellα).
Remarkably, for all of the trajectories the velocityv remains constant along the ladder,

except in the cells near the border, where the vortex accelerates. This behaviour occurs for
all values ofiext andλ⊥. This fact is connected to the vortex extension: studies on larger
2D arrays [7] reveal that the vortex accelerates when it is at distances from the border of
the order of its radius. In the ladder the small transversal length (a, the lattice spacing)
constrains the vortex to occupy a restricted extension (see figure 1(b)).

We remark that a constant velocity of transmission, together with a strong vortex
localization, is a very desirable characteristic for the development of cryoelectronics devices.

The dependence ofv on the external currentidc and the penetration depthλ⊥ is shown in
figure 2. From figure 2(a) we conclude that, if one is interested in the controlled propagation
of one single vortex, the relevant range ofidc-values is [id , ic], where id = 0.458± 0.002
is the depinning current at zero magnetic field. Above the critical currentic = 1, once
the laminar flux of the current has been distorted by a perturbation (e.g. the presence of
a vortex), one observes the periodic creation of new vortices. This hinders the ladder
operation as a 1D transmission line of single bits. Figure 2(b) shows, for different bias
currents, how the velocity decreases asλ⊥ is reduced.

The Gibbs energy of a phase configuration in a Josephson junction array is given by

U =
∑

i

iext;iφi −
∑
ij

cos(φ − φj − Aij )

(if screening effects are not negligible, it is necessary to add the magnetic energy term
1
2iijLij ;klikl). In the case of one single vortex,U can be decomposed into five terms:
U(x) = U0(x)+Ui(x)+Uc +Upot (x)+Uf0(x). They give an account, respectively, of the
vortex energy in zero external magnetic field, the vortex interaction with the bias current,
the core energy (half of the energy required to create a vortex–antivortex pairUc = π2/2),
the energy due to the periodic structure of the ladder, and the interaction with the external
magnetic field. For simplicity, we consider the contribution of the self-field included inU0.
In our case (f = 0) the relevant terms areUi , U0 andUpot . Their expressions, calculated
in a 2D array in theλ⊥ → ∞ limit (no screening), are [8]

U0(x) = π ln

(
2L

π
cos

(
πx

L

))
(9)

Ui(x) = −2πi

(
x + L

2

)
(10)

and

Upot (x) = −1

2
EB cos(2πx). (11)

All of these energies are given in terms ofEJ = Ic80/(2π). L is the perpendicular
dimension of the array (with respect to that of the bias current), andEB is the energy
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Figure 3. (a) U(t) during the motion of a vortex in a 128-cell ladder, withidc = 0.7, λ⊥ = ∞.
At ta the vortex is created and begins to move; attb it gets to the border of the ladder and
disappears.U(t) can be fitted with the straight line for 2πidcx or, equivalently, 2πidcvt . U is
given in units ofEJ = Ic80/(2π). (b) U − 2πidcx versust . The figure clearly shows theU -
oscillations as the vortex moves from one cell to the next. The fit to the large 2D expression for
U0 is not so satisfactory: we compareU −2πidcx(t) (black dots) with the value ofU for a static
vortex as a function ofx (rhombs) and the large 2D expressionπ ln((2L/π) cos(πx/L)) (open
circles). The three curves have been shifted so as to have the same value atx = 0. (c) U0(x) as
a function ofλ⊥: U0(0) (black dots),U0(1) (continuous line) andU0(2) (discontinuous line).
The curves have been shifted so that the absolute minimum of the energy (U = −EJ nlinks ,
wherenlinks is the number of links in the array) is nowU = 0.
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Figure 4. EB versusv. (a) We neglect inductance effects (λ = ∞) and makeidc vary. The
resultingEB is an exponential function ofv: EB = α exp(−βv) (in this case,α ≈ 2.5 and
β ≈ 2π ). (b) EB versusv for different values ofλ⊥. We compare the curves obtained with
different bias currents:idc = 0.95 (black dots),idc = 0.90 (rhombs) andidc = 0.80 (open
circles).

barrier that the vortex must overcome when passing from one cell to the adjacent one. We
take the origin,x = 0, at the central plaquette of the array.

Ui can be nicely fitted to equation (10), as shown in figure 3(a). In order to study the
other components, we subtract 2πidcx from U (figure 3(b)). The curve shows a periodic
component, which can be directly related toUpot (x).

In a ladder the vortex extension is restricted to a small number of cells. Thus the vortex
is not sensitive to border effects unless it is in the vicinity of the ladder edge. This explains
the spatial distribution ofU0(x): it is flat inside the ladder and increments at a distance
from the border of 2a–3a. The screening field does not qualitatively modify this behaviour:
it just produces a shift of the whole energy curve plus an reduction of theU(x)-slope near
the border (figure 3(c)). This distribution is quite different from that observed for large 2D
arrays [7] (the comparison withU0(x) in the case of infinite penetration depth is made; see
again figure 3(b)).
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Figure 5. EB(static) versusλ⊥. In the inset we show the current distribution around a vortex
when it is in cellsi andi − 1. Note that the values of the vertical currentiy (i) when the vortex
is in cell i and in celli − 1 are of the same modulus and opposed sign.

From Upot (x) we can obtainEB in a straightforward way. Figure 4 shows the
dependence ofEB on idc and λ⊥. In the limit of infinite penetration depthλ⊥ → ∞
(no screening effects)EB fits very well to an exponential dependence on the velocityv

(figure 4(a)). The effect of the self-field is taken into account in figure 4(b). We point out
that the extrapolatedEB-value atv = 0 is not unique for the different curves: it depends
on idc. We have checked this point as follows:EB is a smooth function of exp(−v), and
can be fitted to a second-order polynomial; from this fit it is possible to extrapolateEB in
the v → 0 limit.

The values ofEB that we report are quite different from those obtained for a static
vortex in large 2D arrays. In particular, for an infinite penetration depth it has been
found thatEB(static) = 0.2 [11]; Phillips et al have generalized this result taking into
account the screening effects: the energy barrier grows asλ⊥ decreases, and for example
EB(static, λ⊥ = 1) ≈ 0.4 [12]. In figure 5 we report the energy barrier of a ladder in the
static case. The figure suggests that the restricted vortex extension imposed by the ladder
causes an increasing of the static energy barrier. This is defined asEB(static) = E(l)−E(p),
whereE(p) andE(l) are, respectively, the energies of a vortex centred in a plaquette and
in a link. In order to calculateEp we start from the (φi, Aij ) configuration corresponding
to the presence of a vortex in the ladder and let the parameterλ⊥ vary. The absolute value
of the upper and lower horizontal current of the cell with vorticity 1 increases withλ⊥, up
to its maximum valueix = 1. At this point any small change inλ⊥ cannot be sustained
by an increase of the currents and the vortex structure becomes unstable. In the case of
zero external field, this occurs atλ⊥c = 1.812± 0.018 [9]. Within a range ofλ⊥-values
aboveλ⊥c, the vortex, though unstable, is still maintained.E(l) is obtained by fixing the
gauge-invariant phase of the central vertical link toπ/2 and letting the configuration relax
with this constraint. This choice ofφy(0) is due to the symmetry of the vortex shape: the
values of the vertical currentiy(i) (see the inset of figure 5) when the vortex is in celli

and in celli − 1 are of the same modulus and opposed sign. Thus there is an intermediate
moment wheniy = 0, and thus the gauge-invariant phase along the link isφy = 0.

The difference between the dynamical and static values of the barrier energy can be
qualitatively explained as follows. While the vortex is moving, the phase configuration
does not have time to relax, and thus the energy is greater than that of a static vortex. In
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addition, there is an extra contribution to the energy, i.e. that supplied by the external current
(the supplied power is

∑
i ii (ext) dφi/dt). The Josephson energy, the externally supplied

energy and the magnetic energy have their maxima when the vortex is located between two
cells. Thus their contributions toEB are added.

If the junction capacitance is negligible (the vortex mass is zero), the force balance
during the propagation process is

∂U(x)

∂x
= −η0v(x) (12)

whereη0 is the adimensional damping coefficient [10]η = η08
2
0/(2a2R). η0 is a function

of both idc andλ⊥, and can be easily computed from figure 2 in the following way: inside
a ladder (see figure 3)η0v(x) is given by a constant value 2πidc (coming fromUi) plus
an oscillating termπEBsin(2πx). From equation (12) we can deduce the value ofη0vi(t),
where vi(t) is the instantaneous velocity. Asv(x) = 〈vi(t)〉n = 2πidc, η0v(x) remains
constant while the vortex propagates inside the ladder. Its value is given by

η0(idc, λ⊥) = 2πidc

v(idc, λ⊥)
. (13)

4. Conclusions

In conclusion we have studied in detail the vortex transmission in a ladder of
superconducting junctions. In particular, dynamical variables such as the velocity,v, the
damping coefficient,η0, and the dynamical energy barrier,EB , have been worked out as
functions of the bias current, the magnetic penetration depth and the vortex position.v and
EB are shown to be respectively an increasing and a decreasing function ofidc andλ⊥.

Inside the ladder, the instantaneous vortex velocityvi(x) is composed of a constant
term plus a sinusoidal component, due to the motion from cell to cell; we can define a cell-
average velocity which remains constant throughout. At 2–3 plaquettes from the border,
the vortex suddenly accelerates.

We remark that the study of the single-vortex dynamics, besides its interest as a
theoretical problem, is relevant for practical implementations of arrays of Josephson
junctions. In particular, most cryoelectronics devices are based upon the use of vortices or
antivortices as signals carrying information quanta.

We stress that variables such asv or EB are measurable quantities, so our results could
be experimentally checked by means of, e.g., low-temperature scanning electron microscopy
(LTSEM) [13]. This technique allows one to measure time-averaged voltage fluctuations
(1V ) with a high spatial resolution.1V (x) can be related to the vortex/antivortex velocity
at cell x. On the other hand, from the spatial variation of the velocityv(x) it is possible to
extract the value ofEB .
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